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1. INTRODUCTION

In previous papers, [8, 11] H-polynomials or "Horner-like" polynomials
were introduced and some theoretical aspects were considered, especially
with regard to Chebyshev approximation by these functions. The subject
of this paper is a numerical method for computing locally best approxi
mations which depends on an alternative representation of the classes of
polynomials. In Section 2 we recall the definition and some of the main
properties of H-polynomials. In Section 3 we derive the announced alternative
representation leading to the algorithm described in Section 4. Finally, in
Section 5 we give some examples.

2. H-POLYNOMIALS

DEFINITION. An H-polynomial is a function zn(x) of the real variable x
and the real parameters ao,... , an, generated by the following rules. Let
j = j(k) be a function with the properties:

j, k are integers, 1 ~ k ~ n, 1 ~ j ~ max{l, k - I}. (2.1)

znCx) is recursively defined by zo(x) = ao,

Zk(X) = Zk_l(X)X + ak

= ±Zk-l(X) Zj(k)(X) + ak

if j(k) = 1

if j(k) > 1
(k= 1, ... ,1l). (2.2)

In the casej(k) == 1, we get as znCx) the polynomial
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generated by the Horner-algorithm. In [8] it was shown that the
H-polynomials generated by different functions j(k) are essentially different.
Thus, for n ;:?: 1 we have (n - I)! different H-polynomials. Given x, the
evaluation of zn(x) requires exactly as many multiplications and additions
as the evaluation of a polynomial of degree n by Horner's algorithm. Thus
we have (n - I)! different classes of polynomials, with respect to computing
time equivalent to the class of all polynomials of degree less or equal to n.
This makes it likely that for a number of standard functions we can find
computer approximations of a higher accuracy than yielded by ordinary
polynomial approximations, requiring the same computing time and similar
storage as the latter. In [11] it was shown that a best approximation does not
always exist. Thus we have a nonlinear approximation problem of a rather
general type. Conditions for a given function to be a locally best approxi
mation are given in [7, 12].

3. AN ALTERNATIVE REPRESENTATION OF H-POLYNOMIALS

Let n ;:?: 1 be a fixed natural number, j(k) a given function satisfying (2.1),
and Zk(X) be given by (2.2). Then we can write

g(k) "

Z (x) - '\' 1'1'(a a ) Xg(k)-v
k - i...J Jv 0,···, k ,

v=o

k = O, ... ,n, (3.1)

where the Ivk are polynomials in the variables ao '00" ak . For the degree g(k)
of Zk(X) we get from (2.2) g(O) = 0,

g(k) = g(k - 1) + 1

= g(k - 1) + g(j(k))

if j(k) = 1

if j(k) > 1
(k = 1'00" n). (3.2)

We can regard Zk(X) as a manifold M k ofdimensionk + 1 in the (g(k) + 1)
dimensional vectorspace of all polynomials of degree g(k) or less. (3.1) is a
parameter representation of M k • We wonder if we can describe M k in the
following way:

\ g(k) (

M k = /zix) = v~ dvxg
(7c)-v Ic;(do '00" dg(k») = O,j = 1'00" g(k) - k\,

(3.3)

with certain functions c;. We shall show that such a description is possible
for the subset of functions in M k of degree exactly g(k). To illustrate our
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theory we consider an example: let n = 4 andj(l) = j(2) = ],)(3) = j(4) = 2.
Then

zo(x) = ao

Zl(X) = zo(x)x + a1 = aox + a1

Z2(X) = Zl(X)X + a2 = (aox + a1)x + a2
Z3(X) = (T3Z2(X) Z2(X) + a3

= (T3(ao2x4+ 2aOa1x3+ (a1
2 + 2aOa2) x2+ 2a1a2x + a22+ (TaGa)

Z4(X) = (T4Z3(X) Z2(X) + a4 (3.4)

= (T4[ao3x 6 + 3ao2a1x5 + (3ao2a2+ 3al2ao) x4

+ (6aOa1a2+ a1
3

) x3 + (3a1
2a2+ 3aOa22 + o'4aoaa) x2

+ (3a1a22+ (T4alaa)X + a23 + (T4a2aa+ (T4a4].

Here (Ta and (T4 are parameters with values in {-1, ]}. We have g(O) = 0,
g(l) = 1, g(2) = 2, g(3) = 4, g(4) = 6, and for example

Now we prove some properties of the functions Ivk in (3. I).

LEMMA. (i) For k = 0, ... , n we have

(3.5)

with (Tk = ~ I and fL" given by fLo = 1,

if j(k) = I
(3.6)

~r j(k) > 1.

(ii) By g E Fi we denote that g is a function of at most the variables
ao , ... , Gi' Then, for ] ~ i ~ k ~ n,

f lo - ±N(k .) "k-"-i -L
g(i) - ,I ao ai' glo.i' (3.7)

with natural numbers N(k, i) and polynomials glo,i E Fi- 1 • Jvforeover, Iv" E Fi- 1

for v < g(i).

Proof The validity of (i) is obvious from (2.2). We prove (ii) by induction
on k. For k = i we have f:(il = f~(i) = ai + gi.i , gi,i E Fi - 1 , and obviously
Iv" = Ivi E Fi - 1 for v < g(i).

Suppose I> i and (ii) is valid for i ~ k ~ t - 1. We distinguish the
cases (OI.)j(t) = 1 or)(/) < i and «(3»)(/) > 1 andj(t) ~ i.
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(ex) By induction hypothesis we have

for v < g(i),

and
P(x) = x

= ±Zi(tlx)

if jet) = 1

if jet) > 1.

From jet) = 1 or j(t) < i we conclude that P(x) is a polynomial whose
coefficients are in F i - l . From this and (i) the assertion follows.

(fi) By induction hypothesis we have

with

and

f
C-l fi(C) E: F
v 'JI 1,-1 for v < g(i)

Again the assertion follows from this and (i), and the lemma is proved.
For example (3.4) we compute fLo = fLl = fL2 = 1, fL3 = 2, and fL4 = 3.

Corresponding to (3.5) the coefficients of x 2 resp. x6 in Z2(X) resp. Z4(X) are
ao = a~2 and a4a03 = ±a~4. Further we see that the coefficient of the term
of highest order in zix) which depends on a3 , is the coefficient of x 2, thus
f;(3) = h 4 = a4[3al

2a2+ 3aOa22 + a4aOa3] in accordance with (ii).
Next, we define Mn* = {zn E: M n I Zn is of degree exactly g(n)}. Let

zn(x) = a L~~~) dvxg(n)-v E: M n* be a given function, with a E: {-I, I} such
that do > O. Then, by definition there exist ao , ... , an such that

v = 0, 1,... , g(n). (3.8)

The lemma shows that we can express the ai uniquely as functions of the
coefficients dv: by (3.5) we have ado = ana~n . Setting an = a we obtain

a = dl/"no O' (3.9)
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Because of do > 0, (3.9) is always defined. From (3.7) we compute
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i = 1, ... ,11, (3.10)

with polynomials gn,i E F i - 1 •

Now we substitute ai = ai(do ,... , dg(n»), i = 0" .. , n, into the g(n) - n
equations adi - j;n(ao ,... , an) = 0, i E I, with

1 = {O, 1,2,... , g(n)} ,...., {O, g(l), g(2), ... , g(n)}.

This leads us to a system of equations

(3.11)

i E 1, (3.12)

which must be satisfied by the coefficients di of zn(x) E M n*. On the other
hand, if do > °and the di solve (3.12) then from (3.9), (3.10) we can find
ao , ... , an such that (3.8) holds. Thus, znCx) E M n*. Thus, we have proved the
following theorem.

~ 1 M * - { () - "g(n) d g(n)-v i I ·(d' d' - 0 . [,IHEOREM. n - Zn X - L.."v~o vX I I, 0'"'' g(n») - , IE f,

where I is defined by (3.11) and hi(do ,... , dg(n» = adi - j;n(ao ,... , an), with Cli
given by (3.9), (3.10).

Concerning the functions hi we have the following theorem.

THEOREM 2. Let i E I and Si = max{k : g(k) < i}. Then we have

'l-'K iSili- f-t m'm'
m=l

with natural numbers mi , rational numbers K",i, and

i

Smi = n dt(k) ,
k~l

where t(k) E{g(O), g(l), ... , g(sJ, i}, L:~~l t(k) = i.

(3.13)

We omit the extensive but elementary proof.
To demonstrate the above technique, we derive the hi for example (3.4).

System (3.8) becomes:

ado = a4ao3
,

ad2 = a4(3ao2a2 + 3a1
2ao),

ad4 = a4(3a1
2a2 + 3aOa2

2
) + aOa3 ,

ads = a4Cl23 + a2a3 + a4 •

adl = a43a02al ,

ad3 = a4(6aoal a2 + a1
3),

ad5 = a43al o2
2 -i- {lla3 ,
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By (3.9), (3.10) we get (a = ( 4):
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Substituting these expressions into the equations ads = a4(6aoala2+ alS) and
ad5 = a43ala22 + alaS we did not use yet (we have I = {3, 5}) results in the
following equations which have the form prescribed by Theorem 2:

hs(do, dl , d2, ds) = (27do2da - l8dodld2 + 5dlS)j(27do2) = 0

h5(do, dl , d2 , d4, d5) = (8ldo4d5 + 3dodlSd2 - 27do3dld4 - d1
5)/(81do4) = O.

We close this section by a representation theorem for the closure M n* of M n*
(in the topology of pointwise convergence). Clearly M n* C M n C M n* = M n'
While in M n a best Chebyshev approximation does not exist for every
function in C[a, b], in M n there is always a best approximation (cf. [9]). Let

A = {d = (do ,... , dg(n»)T E /Rg{nl+l Ihi(do ,..., dg(n») = 0, i E I, do =1= O}

and A the closure of A. The following theorem holds:

THEOREM 3. The closure M n of M n is given by

Proof The assertion follows immediately from the fact that a sequence
of polynomials converges pointwise if and only if all the sequences of the
coefficients converge.

4. A NUMERICAL METHOD

The following method for computing locally best approximations is also
applicable to more general linear approximation problems with nonlinear
constraints.

Let [a, b] be a compact real interval, f a function, continuous on [a, b].
If we use the representation of M n * given by Theorem 1, the determination
of a best approximation from M n * to f is equivalent to the following
optimization problem:

Maximize X(do ,... , dg(n) , €) = -€ (4.1)
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subject to the constraints

gIn)

I d"xYinJ -" - f(x) - E ~ 0,
1)=0

y(nJ

- I d"xY(n)-" f(x) - E ~ 0,
v=o

xE[a,b]

i E 1.
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(4.2)

(4.3)

First, we consider the discrete problem where [a, b] in (4.2) is replaced by
a finite subset Be [a, b]. Thus the number of constraints (4.2) is finite. The
method we have used is a combination of two other optimization methods
(cf. [5, 13]):

(a) The sequential unconstrained minimization technique (SUMT)
([1-4)).

(b) A method for solving problems of the type: maximize g(x) subject
to the linear constraints tlx) ~ 0, i = 1,..., p. Examples of suitable methods
are the gradient-projection method [10] Of the conjugate-gradient-projection
method [5J.

SUMT is suitable for problems of the fellowing type: maximizeg(x) subject
to vJx) ~ 0, i = 1,...,p, wix) = 0, j = 1,... , q. To solve this problem a
sequence of unconstrained problems is solved: let {Pv} be a sequence, p" > 0,
lim,,_,",o p" = O. For each v a maximum point XV of

p q

gJx) = g(x) + Pv I (VJX»-l - p;1 j 2 I Wi
2(X) (4.4)

i~1 i=1

is determined and the sequence {xv} is expected to converge to the solution
of the given problem. Convergence can only be proved under rather strong
conditions (cf. [2]) which do not hold in our case.

A disadvantage ofSUMT is that linear constraints give rise to nonlinear
terms in gv. This suggests to handle only the nonlinear constraints (4.3) as
does SUMT and to solve linearly constrained problems instead of uncon~

strained:
Assume {Pv} as above. For each v the following problem is solved by a

method of type (b):
Maximize xvCdo , ... , dg(n) , e-) = - E - p-;;1 Lie! hl(do , ... , dg(n» subject to

the constraints (4.2) ([a, b] was replaced by B!).
There are two ways to treat the continuous problem:
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Starting with a finite subset B C [a, b] further constraints are added
until (4.2) holds within a given precision.

By solving a discrete problem once an estimate is obtained for a locally
best approximation as well as the positions of the extrema of the error
function. To improve this estimate, the method of Newton (cf. [13]) or
another iterative method may be applied.

The solution of the unconstrained problem (corresponding to Po = (0) is
expected to be a suitable initial point for the iteration. By means of the
conditions given in [7] it can be tested whether a locally best approximation
is found or not. In general it will be impossible to decide if the approximation
is also globally best. Taking other initial points one can attempt to find further
locally best approximations.

5. EXAMPLES AND NUMERICAL RESULTS

Now, for n = 3 and n = 4 we will give a list of all H-polynomials and the
respective constraints. Let (j = ±1 and zix) = aox2+ a1x + a2 . An upper
index denotes the degree of the H-polynomial, a second upper index numbers
different polynomials of same degree.

n = 3. Besides the class Z~3)(X) = P3(X) of all polynomials of third degree,
we have just one H-polynomial of fourth degree

4

Z~4) = U(Z2(X))2 + a3 = I dvx
4- v

~,=o

where the di satisfy

n = 4. Besides Zl4)(X) = pix) we have five H-polynomials:

(a) ZlS.l)(X) = Z~4)(X)X + a4 = L~=o dvxs- v with the same constraint as
Z~4)(X).

(b) ZlS.2)(X) = (jZ~3)(X) Z2(X) + a4 = L~~o d,x5- v with

hido , d1 , d2 , d3 , d4)

= (64do3d4 - 32do2d1d3+ 24dod12d2 - 16do2d22 - 5d14)/(64do3) = o.

(c) zi6.1)(X) = (j(Z~3»)2 + a4 = L~~o dvx6- v with
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and

and
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hs(do , dl , dz , ds , ds)

= (64do4ds - 32dosdzds + l6dozdldz2

- 8dodlSdz + 8dozdl2d3 -+- dI
5)j(64do4) = o.

(d) Z~6.Z)(X) = crz~4\X) zzCx) + a4 = L~~o dvx6-" with

h3(do , dl , dz , ds)

= (27do
Zd3 - 18dodl dz + 5dI

S)j(27doZ) = 0

hs(do , dl , dz , d4 , ds)

= (81do
4ds + 3dodlsdz - 27dosdld4 - dI

S)j(81do4) = O.

(e) zi8)(x) = ()(Z~4)(X»)2 + a4 = I:~~o dvxs- v with

hldo , dl , dz , ds)

= (32doZd3 - 24dodld2+ 7dI
S)j(32do2) = 0,

hs(do , dl , dz , d4 , ds)

= (256do4d5 + 20dodl3dz - 128do%d4 - 7dI
S)j(256dr/) = 0,

h6(do , dl , dz , d4 , d6)

= (4096do5d6 - 2048do4dzd4 + 512dosdz3 + 512do3dlZd4

- 192dozdlzdzz - 16dodl4dz + 7d1
6)j(4096do5) = 0,

hldo , dl , dz , d4 , d7)

= (2048do
6d7 - 256do4dldzd4 + 64do3dldz3 + 96do3dl3d4

- 24dozd13dzz - 8dod15dz + 3d17)j(2048do6) = O.
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It is essential to retain the powers of do in the denominator: if do = dl = 0,
all numerators become zero for each choice of the other di • This may result
in numerical instability of the method if the denominators in the equations
are omitted.

To test the method a FORTRAN IV program has been written and a
number of examples have been treated. Though no correction of rounding
errors took place, except for Z~8) the results were satisfactory in all cases.
Some of the results are given in Table I below. The results indicate that
systematic computation of approximations to standard functions by H
polynomials (as is done in [6J for ordinary polynomials and rationals) could
be advantageous. Note that for the Gamma function rex) the deviation for
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TABLE I

Function Interval Error Z(4) ZI5.1) Z(G.2) Z(G.l) Z(G.2) Z(5)
4 4 4 4 4 5

lOx (0,1] reI. 2.99 2.60 2.73 3.52 3.57 4.01

tan (i II X l/2 )
(0,1] reI. 5.50 4.67 5.66 5.58 5.78 6.64

X l/2

T(x) (2,3] abs. 4.24 3.33 4.93 4.60 5.42 5.27

zi6
•
2

) is even smaller than for Z~5), the full class of polynomials of degree five
or less. The numbers in the table are the values -loglo(err) with err the
corresponding (relative or absolute) maximum errors.
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